Synthetic plant virology for nanobiotechnology and nanomedicine

نویسندگان

  • John F. C. Steele
  • Hadrien Peyret
  • Keith Saunders
  • Roger Castells‐Graells
  • Johanna Marsian
  • Yulia Meshcheriakova
  • George P. Lomonossoff
چکیده

Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viral chemistry: the chemical functionalization of viral architectures to create new technology.

The modification of viruses using chemical conjugation techniques has brought the distant worlds of virology right into the center of nanotechnology. Viruses are naturally resilient biomolecules and this makes them exceptional templates for the creation of higher order polymers and as scaffolds for biological imaging and targeted drug delivery. In this review, we highlight progress in utilizing...

متن کامل

Magnetic nanobeads: Synthesis and application in biomedicine

Nanobiotechnology appears to be an emerging science which leads to new developments in the field of medicine. Importance of the magnetic nanomaterials in biomedical science cannot be overlooked. The most commonly used chemical methods to synthesize drugable magnetic nanobeads are co-precipitation, thermal decomposition and microemulsion. However monodispersion, selection of an appropriate coati...

متن کامل

Microengineered synthetic cellular microenvironment for stem cells.

Stem cells possess the ability of self-renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and...

متن کامل

The engineering of artificial cellular nanosystems using synthetic biology approaches.

Artificial cellular systems are minimal systems that mimic certain properties of natural cells, including signaling pathways, membranes, and metabolic pathways. These artificial cells (or protocells) can be constructed following a synthetic biology approach by assembling biomembranes, synthetic gene circuits, and cell-free expression systems. As artificial cells are built from bottom-up using m...

متن کامل

A Hybrid Model for a Hybrid Science.

This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017